期刊 基于乐观抱怨值和悲观抱怨值的合作博弈最优妥协值的求解模型  

Model of Optimal Compromise Values of Cooperative Game Based on Optimistic Complaints and Pessimistic Complaints

作  者:南江霞 李西娜 张茂军 

NAN Jiangxia;LI Xina;ZHANG Maojun(School of Mathematics and Computing Science,Guangri Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,Guilin 541004;School of Business,Suzhou University of Science and Technology,Suzhou 215009)

机构地区:[1]桂林电子科技大学数学与计算科学学院,广西高校数据分析与计算重点实验室,桂林541004 [2]苏州科技大学商学院,苏州215009

出  处:《系统科学与数学》2021年第1期254-268,共15页Journal of Systems Science and Mathematical Sciences

Model of Optimal Compromise Values of Cooperative Game Based on Optimistic Complaints and Pessimistic Complaints

基  金:国家自然科学基金(72061007,71961004,71801060,71561008,71808060);桂林电子科技大学研究生教育创新计划资助项目(2019YCXS082)资助课题。

摘  要:基于乐观抱怨值和悲观抱怨值,通过建立二次规划模型求解(Hou,et al.,2018)定义的平衡博弈的最优妥协值,二次规划模型及求解方法比(Hou,et al.,2018)提出的字典序方法简单易操作.此外,文章进一步给出了同时满足个体合理性和群体有效性的乐观最优妥协值的求解算法.最后,通过数值实例说明文章建立的模型和方法的合理性和有效性.

In this paper,quadratic programming models are constructed to obtain the optimal compromise values of balance games in(Hou,et al.,2018) based on optimistic complaints and pessimistic complaints.Quadratic programming model and its method of solution are easier to operate than that of lexicographic order.In addition,we give an algorithm to solve the optimal optimistic compromise value which satisfies both individual rationality and group effectiveness.Finally,numerical examples are given to illustrate the rationality and effectiveness of the model and method proposed in this paper.

关 键 词:二次规划 乐观抱怨 悲观抱怨 ENSC值 CIS值 

Quadratic programming optimistic complaints pessimistic complaints ENSC value CIS value 

分 类 号:G63[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关文献:

正在载入数据...

北京电子科技职业学院特色库 版权所有 ©2018